
NETCT Handling
Faster Net Connect Table searches

Thu, Jun 19, 2003

The Net Connect Table (NETCT) houses Acnet task names and UDP ports along with the 
message queue id needed for passing along communications to the next level. For example, 
when a datagram is received that is destined for the Acnet UDP port, the NETCT is searched to 
obtain the message queue id for passing a reference to the datagram to the Acnet task. When 
the Acnet task sees a datagram reference for a request message, it searches NETCT for the 
destination task name so it can pass it to the handler for the RETDAT protocol. This note 
explores how to speed up such NETCT table searches for PowerPC systems, since the table is 
currently in (slow-to-access) nonvolatile memory, being a component of the TRING table.

Consider maintaining a fast memory copy of the table. The contents of the table contain 
entries that include fields for the task name (or UDP port#), a message queue id, and 
optionally, a process id and event mask. One more word contains a counter that indicates 
activity or message reception for that entry. (This is used by code in LOOPAAUX.) Except for 
the counter, the fields in the entry are relatively static. Certain page applications might install 
a new entry that will be removed upon exit, but most applications do not affect the contents 
of this table. A local application might install a new entry, but local applications are typically 
installed at boot time, not usually changing during system operation.

For the PowerPC, searching a fast memory copy is almost free, as there is a maximum of 23 
entries to search. By "almost free," we mean that the search time would pale compared to a 
single access to nonvolatile memory. In contrast, nothing would be gained in an IRM, as its 
access to nonvolatile memory access is no slower than its access to volatile memory.

(Another approach would be to use the name table to replace the search time by a table 
lookup involving a hash of the task name. This is not as good for the PowerPC, because the 
name table support includes checking for a match against the nonvolatile table at least once, 
assuming no collisions.)

The main code that searches the NETCT may be NCFIND. If we make that routine smarter, so it 
can check for the fast copy, it may take care of things for most needs.

But there is a simplifying fact. The NETCT does not need to be nonvolatile at all! It is created 
from scratch at system reset time. Many references to NETCT find it via NCTRPTR, a constant 
(0x2E) that is the offset into the TRING table where the 2-byte offset to the NETCT is found.

Suppose there is a low memory variable that is the address of the fast memory copy of NETCT, 
or NULL if none exists. Then all the code that refers to NETRPTR can be modified to check for 
that variable being non-NULL first. This will avoid even the nonvolatile reference to that 2-
byte offset from the start of TRING. When there is a fast copy of NETCT, there does not also 
need to be a slow copy. It would be useful for diagnostics, however, for the fast copy to be 
located in a fixed area of memory.

Refs to NCTRPTR:
IPNodeN.a (lookup entry via portId)
NetIntIP.a (establishes 2-byte offset)
NetLayer.a (NetCnct, NetDcnt, NetQueue, NetCheck, NCTName)
UDPLayer.a (UDPCnct, VPortId, UDPCheck)



Refs to NETCT:
IPNodeN.a
NetIntIP.a
SNAP.a
UDPLayer.a

Refs to NCFIND:
ANet.a
ArcInt.a
InsChain.a
NetLayer.a
SNAP.a
UDPLayer.a

There are quite a few references in all. The new code should examine a new low memory 
variable that is set to the address of the NETCT table. This table would always exist at a fixed 
location. All users that access the contents of this table should be modified to check for the 
address of the table in the new low memory address. For an application that is separately 
compiled, it might check for the low memory, deriving the current logic if it is NETCT. This 
would allow such an application to be downloaded to an old system. Any new system will 
have a correct address of the fast NETCT; any old system will have NETCT in that low memory 
pointer variable. The new system code will not look for a NETCT in the TRING table, since it 
would always exist in fast memory.

The number of accesses to slow memory in the present scheme during a call to NCFIND is 
(2!+!2*N), where N is the number of entries in NETCT scanned before a match is found. Each 
access is about 1 µs, so if N = 4 for RETDAT, it takes 10 µs per call. But such calls only occur 
when a request is received. (For replies, a search is not needed, since the task id, which is the 
index into the NETCT table, is included in the Acnet header.) In the Linac PowerPC nodes, 
however, there is a constant search for SRMD in connection with 15 Hz SRM-based data 
collection, and SRMD is found after 6 entries are searched. This happens for every SRM at 15 
Hz. A few nodes have as many as 6 SRMs, so this can add up to 6*14 = 84 µs per 15 Hz cycle. 
For each such occurrance, another pair of accesses is needed to increment the counter, 
bringing us up to 96 µs. This is still not a very large part of 66 ms. Maybe the time wasted in 
such searches is not worth fixing.

Net Connect Table Handling p. 2


